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Talk overview

Why does it work? Why/When can we train neural networks
efficiently?

How to get it robust? How can we guarantee that a classifier is
robust against adversarial manipulation?
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Success stories of Deep Learning I - Computer Vision

ImageNet Challenge has 1000 classes and 1.2 million training images

ILSVRC Winner 2010 2011 2012 2013 2014 2015 2016 2017
top-5 error in % 28,2 25,8 15,3 11,7 6,6 3,6 3,0 2,3

before deep learning and using deep learning (CNN’s)
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Why/when can we train neural networks efficiently?
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Bad news for training neural networks...

Training neural networks is computationally hard e.g. Blum, Rivest
(1998), Sima (2002), Livni et al (2014).

Neural networks can have exponentially many (suboptimal) local
minima Auer et al (1996), Safran, Shamir (2016)

taken from Auer et al (1996) - single neuron for two-dimensional input
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...but in practice no problems!

Empirical Observation: suboptimal local minima seem not to be a big
problem in training large deep networks (Goodfellow et al, 2015)

Can one justify that (overparameterized) neural networks are
“easy” to train?

Choromanska et al (2015): randomization of ReLU-activation
function plus further assumptions allow to reduce it to spin-glass
model, where the local minima are concentrated

Baldi,Hornik (1988), Kawaguchi(2016): in deep linear networks all
local minima are global minima

lots of further recent work...

Prior work: analysis limited to one-hidden layer networks, deep linear
networks or use distributional or other simplifying assumptions
Our goal: analysis for deep networks which are used in practice
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General assumptions

1 There are no identical training samples, xi 6= xj for all i 6= j resp. for
CNNs no input patches are allowed to be identical

2 σ is analytic on R, strictly monotonically increasing and
1 σ is bounded or
2 there are positive ρ1, ρ2, ρ3, ρ4, s.t. |σ(t)| ≤ ρ1eρ2t for t < 0 and
|σ(t)| ≤ ρ3t + ρ4 for t ≥ 0

3 l ∈ C 2(R) and if l ′(a) = 0 then a is a global minimum of l

Typical examples which satisfy the assumptions e.g.

σ1(t) = 1
1+e−t , σ2(t) = tanh(t), σ3(t) = 1

α log(1 + eαt) for α > 0.
Smooth approximation of ReLU: limα→∞ σ3(t) = max{0, x}.
Squared loss l(a) = a2 or twice differentiable Huber loss, but no
cross-entropy loss.

Assumptions cover a fairly general class of neural networks
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Setting

Multi-layer neural network:

fL(xi ) = WLσ
(
WL−1σ

(
. . . σ

(
W1xi + b1

)
. . .
)

+ bL−1
)

+ bL.

Objective of the optimization problem:

Φ
(

(Ws , bs)Ls=1

)
=

N∑
i=1

K∑
j=1

l(fLj (xi )− yij),

where (xi , yi )
N
i=1 is the training data and K the number of classes.

What can we say about the critical points of Φ, in particular when
one layer k has more units nk than the number of training points N?
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Feature map at a wide layer

Notation: Fk ∈ RN×nk is the output of the k-th layer

Sk =
{

(Wl , bl)
L
l=1

∣∣∣Fk ,Wk+2, . . . ,WL have full rank
}
.

Key technical result:

Lemma

If nk ≥ N and the network is pyramidal from layer k on
(nk ≥ nk+1 ≥ ... ≥ nL), then the complement of Sk has Lebesgue measure
zero.

Summary: If there exists a wide layer (nk ≥ N) then for almost all
parameters, (Wl , bl)

L
l=1, the feature map of the training data Fk at layer k

is linearly independent.
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Loss surface of CNNs and fully connected networks

Theorem (ICML 17/18)

If the condition nk ≥ N holds for layer k, the network is pyramidal from
layer k on and layer k + 1 is fully connected, then

there exist infinitely many global minima in Sk with zero training
error.

every critical point in Sk is a global minimum with zero training error.

Discussion:

suboptimal local minima can only exist for low rank weight matrices
or if the feature map Fk has not full rank =⇒ one can argue (no
rigorous proof) that such points do not exist

the loss surface of over-parameterized neural networks is “easy”
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Are practical networks that wide?

CNN Architecture M = maxknk M > N
VGG(A-E) 3000K(k = 1) yes
InceptionV3 1300K(k = 3) yes
InceptionV4 1300K(k = 3) yes
SqueezeNet 1180K(k = 1) no
Enet 1000K(k = 1) no
GoogLeNet 800K(k = 1) no
ResNet 800K(k = 1) no
Xception 700K(k = 1) no

The maximum width of all layers in several state-of-the-art CNN
architectures compared with the size of ImageNet dataset (N ≈ 1200K ).

Some satisfy our condition and are extremely wide!
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Neural networks with skip connections

Theorem: if there are more than N skip connections to the output layer,
then for cross-entropy and squared loss

there exist uncountably many global minima with zero training error
there exist no suboptimal strict local minima

But wait... doesn’t statistical learning theory tell us that we will
overfit if we can fit everything?
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The bias of stochastic gradient descent (SGD)

Zhang et al. (ICLR, 2017) showed that state-of-the-art neural networks
achieve on CIFAR10 and ImageNet

zero or close to zero training error on the initial data

zero or close to zero training error on randomly flipped labels

zero or close to zero training error on random inputs

Nevertheless they generalize well on the original data.

Why is there no overfitting?

early stopping

implicit regularization of SGD
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Back to skip connections...

rand: Initialize weights up to output layer randomly, then use least squares
to fit output layer =⇒ zero training error with probability 1.

CIFAR 10 Sigmoid Softplus

VGG11 10 78.92

VGG11-skip (rand) 62.81± 0.39 64.49± 0.38

VGG11-skip (SGD) 72.51± 0.35 80.57± 0.40

VGG16 10 81.33

VGG16-skip (rand) 61.57± 0.41 61.46± 0.34

VGG16-skip (SGD) 70.61± 0.36 81.91± 0.24

Densenet121 86.41 89.31

Densenet121-skip (rand) 52.07± 0.48 55.39± 0.48

Densenet121-skip (SGD) 81.47± 1.03 86.76± 0.49

Test accuracy (%) of several CNN architectures with/without skip-connections on
CIFAR10. rand: randomized feature map, SGD: full network trained with SGD.

Conclusion: Among the pool of solutions with zero training error, SGD
selects one which generalizes well =⇒ implicit regularization of SGD.
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How can deep learning become robust?
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Machine learning permeates industry and our society

Autonomous Driving Personalized Medicine Predictive Maintenance

All these applications of machine learning are safety-critical!

High requirements regarding safety and security
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Lack of robustness against adversarial manipulation

Original x δ Adversarial Input x + δ

+ =

Prediction: speed limit 70 ‖δ‖2 = 0.67 Prediction: speed limit 30
99% confidence 99% confidence

adversarial modification which is non-perceivable changes the decision

high confidence in the wrong decision!

This behavior questions usage in safety critical systems!
Current classifiers less robust than visual system of humans?
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Definition of adversarial input

Setting: K classes, input dimension d , classifier f : Rd → RK .
Input x is classified as c = argmax

j=1,...,K
fj(x) (we assume this is correct).

Adversarial input: “Smallest” change δ such that the decision changes
for x + δ (adversarial input).

min
δ∈Rd

‖δ‖p

s.th. max
l 6=c

fl(x + δ) ≥ fc(x + δ)

x + δ ∈ C ,

where C is a constraint e.g., an image has to be in [0, 1]d .
Attention: change is only adversarial if “true” class has not changed.

Choice of p-norm has significant influence on structure of δ
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Influence of distance measure on adversarial inputs
Original δp Adversarial Input

p=1, ‖·‖1 = 1.47 Prediction: 8

p=2, ‖·‖2 = 0.25 Prediction: 8

p=∞, ‖·‖∞ = 0.02 Prediction: 8
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Influence of distance measure on adversarial inputs II
Original δp Adversarial Input

p=1, ‖·‖1 = 6.27 Prediction: deer

p=2, ‖·‖2 = 0.36 Prediction: deer

p=∞, ‖·‖∞ = 0.01 Prediction: deer
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Current state of the art

Attack: come up with new ways how to modify the input

Defense: add modified input during training (adversarial training)

Current approaches lead to “more robust” classifiers - but
all approaches so far were broken again
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Guarantees instead of “more robust” methods

For the use of machine learning in safety critical systems
we need not just more robust methods, we need formal

guarantees that the learned system is robust.
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NIPS 2017 - formal guarantees on robustness

First formal guarantee: Let f : Rd → RK be the classifier and let
x ∈ Rd and c = argmax

j=1,...,K
fj(x)

The classifier does not change its decision for x + δ if

‖δ‖2 ≤ max
α≥0

min

min
j 6=c

fc(x)− fj(x)

max
y∈B(x ,α)

‖∇fc(y)−∇fj(y)‖2
, α

 .

evaluation of the bound for one hidden layer neural networks and
kernel methods with Gaussian kernel

the denominator motivates our new cross-Lipschitz regularization with
the goal to maximize the guarantee

Ω(f ) =
1

nK 2

n∑
i=1

K∑
l ,m=1

‖∇fl(xi )−∇fm(xi )‖22 .
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NIPS 2017 - quantitative results
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NIPS 2017 - quantitative results
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Adversarial inputs - illustration

Original, Class 1 Kernel-SVM, Kernel-CrossLipschitz,
Pred:8, ‖δ‖2 = 1.2 Pred:8, ‖δ‖2 = 2.5

NN-WeightDecay, NN-Dropout, NN-CrossLipschitz,
Pred:9, ‖δ‖2 = 0.9 Pred:8, ‖δ‖2 = 1.0 Pred:8, ‖δ‖2 = 1.1
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Attacks with generic transformations

Use of rotations and translations to produce adversarial examples:

Left: original image (correctly classified), Right: adversarially transformed
image (taken from Engstrom et al, arXiv:1712.02779)

Open Problem:
Robustness guarantees against adversarial generic transformations
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New criterion for choosing a classifier

Among different classifiers giving the same prediction
performance choose the one with the better robustness

guarantee!
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A randomized gradient-free attack on ReLU networks

Key fact: ReLU networks produces piecewise affine functions
Adversarial input: “Smallest” change δ such that the decision changes
for x + δ (adversarial input).

min
δ∈Rd

‖δ‖p

s.th. 〈wl − wc , x + δ〉+ bl − bc ≥ 0,

x + δ ∈ C ,

where C is the intersection of [0, 1]d and the region on which f is affine.

Observation: For each region where the ReLU network is affine, the
problem for the computation of the adversarial input is convex.
Our attack: Randomly select region close to x and solve convex
optimization problem =⇒ improves upon DeepFool or Carlini/Wagner
attack by up to 10% for p = 2.
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The attack in action on MNIST and CIFAR10

MNIST CIFAR10

Visualization of attack scheme as it improves the attacks (and gets closer
to the target image)
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Conclusion and outlook

Conclusion:

learning of overparameterized networks is “easy” but still lack of
understanding of implicit regularization effect of SGD

we need formal guarantees if machine learning is used in safety-critical
applications
=⇒ construct robust deep networks from scratch

learning becomes more and more a multi-objective problem

Outlook:

ensure low confidence predictions far away from the training data

taken from Nguyen et al, CVPR 2015, predictions with ≥ 99.6% confidence

Matthias Hein (University of Tübingen) 30 / 30


